First-Meiotic-Division Nondisjunction in Human Oocytes
نویسندگان
چکیده
منابع مشابه
A Model System for Increased Meiotic Nondisjunction in Older Oocytes
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency wi...
متن کاملMeiotic Recombination in Human Oocytes
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurat...
متن کاملNew Insights into Human Nondisjunction of Chromosome 21 in Oocytes
Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short ...
متن کاملMeiotic Diploid Progeny and Meiotic Nondisjunction in SACCHAROMYCES CEREVISIAE.
Abnormalities in chromosome number that occurred during meiosis were evaluated with a specially-constructed diploid strain of Saccharomyces cerevisiae. The strain is heterozygous for six markers of the right arm of chromosome V and heterozygous for cyh2 (resistance to cycloheximide) on chromosome VII.-Selection of meiotic spores on a medium containing cycloheximide and required nutrilites-excep...
متن کاملAPCFZR1 prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing
FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ~1 h, and this is due ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The American Journal of Human Genetics
سال: 1997
ISSN: 0002-9297
DOI: 10.1086/513890